博客
关于我
【数学】数学归纳法
阅读量:418 次
发布时间:2019-03-06

本文共 716 字,大约阅读时间需要 2 分钟。

第一数学归纳法

第一数学归纳法可以概括为以下三步:

  • (1)归纳奠基:证明n=1时命题成立;
  • (2)归纳假设:假设n=k时命题成立;
  • (3)归纳递推:由归纳假设推出n=k+1时命题也成立。
  • 从而就可断定命题对于从所有正整数都成立。

第二数学归纳法(完整归纳法)

第二数学归纳法原理是设有一个与正整数n有关的命题,如果:

  • (1)归纳奠基:n=1,2时,命题成立;
  • (2)归纳假设:假设当n≤k(k∈N)时,命题成立;
  • (3)归纳递推:由此可推得当n=k+1时,命题也成立。
  • 那么根据①②可得,命题对于一切正整数n来说都成立。

例子

单调有界准则,数列递推,一定要递推关系,不是递推用不了

设a1=1,\(a_{n+1}+√(1-an)=0\),证明{an}收敛,并求\(lim_{n→∞}a_n\).

  • 若存在极限,设为A,则A+√(1-A)=0,A=(-1-√5)/2
    a1=1,a2=0,a3=-1,所以猜想{an}单调递减,有下界
  • 下面用第二数学归纳法证明{an}单调递减:(一般用于单调性
    • n=1,n=2时,a1=1,a2=0,a1>a2
    • 假设n≤k时,\(a_{k-1}>a_{k}\)成立
    • n=k+1时,\(a_{k+1}=-√(1-a_k)<-√(1-a_{k-1})=a_k成立\)
    • 所以{an}单调递减
  • 下面用第一数学归纳法证明{an}有下界:(一般用于上下界
    • n=1,a1=1>(-1-√5)/2成立
    • 假设n=k时,ak>(-1-√5)/2成立
    • n=k+1时,\(a_{k+1}=-√(1-a_k)\)>(-1-√5)/2
      1-ak<(3+√5)/2=(1+2√5+5)/4
      √(1-ak)<(1+√5)/2

转载地址:http://nftkz.baihongyu.com/

你可能感兴趣的文章
MySQL灵魂16问,你能撑到第几问?
查看>>
MySQL灵魂拷问:36题带你面试通关
查看>>
mysql状态分析之show global status
查看>>
mysql状态查看 QPS/TPS/缓存命中率查看
查看>>
mysql生成树形数据_mysql 实现树形的遍历
查看>>
mysql用于检索的关键字_Mysql全文搜索match...against的用法
查看>>
MySQL用得好好的,为什么要转ES?
查看>>
MySql用户以及权限的管理。
查看>>
MySQL用户权限配置:精细控制和远程访问的艺术!------文章最后有惊喜哦。
查看>>
mysql用户管理、常用语句、数据分备份恢复
查看>>
MySQL留疑问:left join时选on还是where?
查看>>
mysql登陆慢问题解决
查看>>
MySQL的 DDL和DML和DQL的基本语法
查看>>
mysql的 if else , case when then, IFNULL
查看>>
MySQL的10种常用数据类型
查看>>
MySQL的btree索引和hash索引的区别
查看>>
mysql的cast函数
查看>>
MySql的CRUD(增、删、改、查)操作
查看>>
MySQL的DATE_FORMAT()函数将Date转为字符串
查看>>
mysql的decimal与Java的BigDecimal用法
查看>>